

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Quantitative Analysis of Acetazolamide in Solid Dosage Forms with ^1H -Nmr Spectroscopy

Hamide şenyuva^a; Tuncel özden^b; İnci Akşahin^a

^a Instrumental Analysis Centre, Scientific and Technical Research Council of Turkey, Ankara, Turkey ^b

Faculty of Pharmacy, Gazi University, Beşevler, Ankara, Turkey

To cite this Article şenyuva, Hamide , özden, Tuncel and Akşahin, İnci(2000) 'Quantitative Analysis of Acetazolamide in Solid Dosage Forms with ^1H -Nmr Spectroscopy', Spectroscopy Letters, 33: 5, 661 — 669

To link to this Article: DOI: 10.1080/00387010009350148

URL: <http://dx.doi.org/10.1080/00387010009350148>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

QUANTITATIVE ANALYSIS OF ACETAZOLAMIDE IN SOLID DOSAGE FORMS WITH $^1\text{H-NMR}$ SPECTROSCOPY

Keywords: *Acetazolamide, Quantitative Analysis, $^1\text{H-NMR}$*

Hamide Şenyuva¹, Tuncel Özden^{2*}, İnci Akşahin¹

¹Instrumental Analysis Centre, Scientific and Technical Research Council of Turkey, 06330, Ankara, TURKEY

²Faculty of Pharmacy, Gazi University, Beşevler, Ankara 06330, TURKEY

ABSTRACT

A rapid and specific proton magnetic resonance spectroscopic method was developed for determining acetazolamide in tablets. Maleic acid was used as the internal standard and DMSO-d₆ served as the NMR solvent. The concentration of drug per unit dose was calculated from the integration values for the resonance signals of acetazolamide at 2.14 ppm and maleic acid at 6.20 ppm. The method using commercial products gave comparable results of those obtained by the method of USP XXIII.

* To whom correspondence should be addressed.
tozden@tubitak.gov.tr

INTRODUCTION

Acetazolamide, N-[5-(aminosulfonyl)-1,3,4-thiadiazol-2-yl]acetamide, is a carbonic anhydrase inhibitor (CAI), and is used therapeutically for treatment of glaucoma, epilepsy and as a diuretic[1]. Methods used for the assay of acetazolamide in biological and pharmaceutical samples have included HPLC (2,3). In the USP XXIII, the assay of acetazolamide in dosage forms also relies on HPLC determination [4]. The aim of this study was to establish a simple and sensitive procedure for determination of acetazolamide in solid dosage forms. The applied NMR spectroscopic method is rapid, specific and very simple. One assay can be completed in less than 20 minutes and the method is selective enough to permit the assay in the presence of certain excipients of dosage forms.

MATERIALS AND METHODS

Chemicals

Standard USP acetazolamide RS was obtained from Sanofi Inc., Turkey. Sulfadiazine (internal standard for HPLC experiment) was USP grade. Anhydrous sodium acetate, glacial acetic acid, sodium hydroxide, and acetonitrile of HPLC grade were purchased from Merck Chemical Industries (U.S.A.). DMSO-d₆ was of analytical grade, obtained from Aldrich (U.S.A.), and 0.45 µm nylon filters obtained from Waters (U.S.A.).

Apparatus

NMR, Bruker DPX-400, 400 MHz High Performance Digital FT NMR (Germany). HPLC, Hewlett Packard Series 1100 Liquid Chromatograph including 7725 rheodyne injector (20 μ l loop), HP UV-Vis detector, vacuum degasser, gradient pump module and column compartment oven. A 5- μ m packing L1 column (4.6mm x 25cm) from Phenomenex was used for the separations.

Assay Preparation for NMR

Twenty tablets were weighed and finely powdered. A portion of well-mixed powder equivalent to 20-25 mg acetazolamide weighed accurately and transferred to a glass-stoppered tube. About 15-20 mg of accurately weighed maleic acid, 0.8-1 mL of DMSO-d₆ and 2 drops of D₂O were added. The solution was mixed by means of a vortex mixer and centrifuged. Using a capillary pipette, about 0.4-0.5 mL of the supernatant was transferred to an analytical NMR tube, the NMR spectrum was taken and from the spectrum the signals at 2.14 ppm and 6.20 ppm were integrated.

CALCULATIONS

The amount of acetazolamide (C₄H₆N₄O₃S₂) per unit dose was obtained from the equation as follows[4];

$$W_{acet} = W_{mal.Ac.} \times E_{acet.} / E_{mal.Ac.} \times A_{acet.} / A_{mal.Ac.}$$

Where, A_{acet} is the integral value for the methyl protons of acetazolamide absorbing at 2.14 δ ppm, $A_{mal.Ac.}$ is the integral value of olefinic protons absorbing at 6.20 δ ppm, $E_{acet.}$ is the formula weight of acetazolamide divided by the number of absorbing protons (222.25/3=74.08), $E_{mal.ac.}$ is the formula weight of maleic acid divided by the number of absorbing protons (116.07/2=58.04), $W_{mal.ac.}$ is the weight of maleic acid used in the assay, mg and W_{acet} is the weight of acetazolamide, in mg.

RESULT AND DISCUSSION

Fig. 1 shows the 400 MHz 1H -NMR spectrum of acetazolamide in DMSO-d₆. In the spectrum, the methyl protons of acetamido group give a sharp singlet at 2.14 ppm and the amine protons give a broad singlet at 8.20 ppm.

Fig.2 shows the 400 MHz. 1H -NMR spectrum of acetazolamide + maleic acid in DMSO-d₆ after deuterium exchange with D₂O. The singlets at 2.14 and 6.20 ppm were used in the quantitative analysis.

The method is also applied to the medicament involving acetazolamide. Since the excipients in the medicament give multiplets between 3.00 and 4.00 ppm and do not interfere with the signals used in quantitative analysis, the quantification of acetazolamide in pharmaceutical dosage

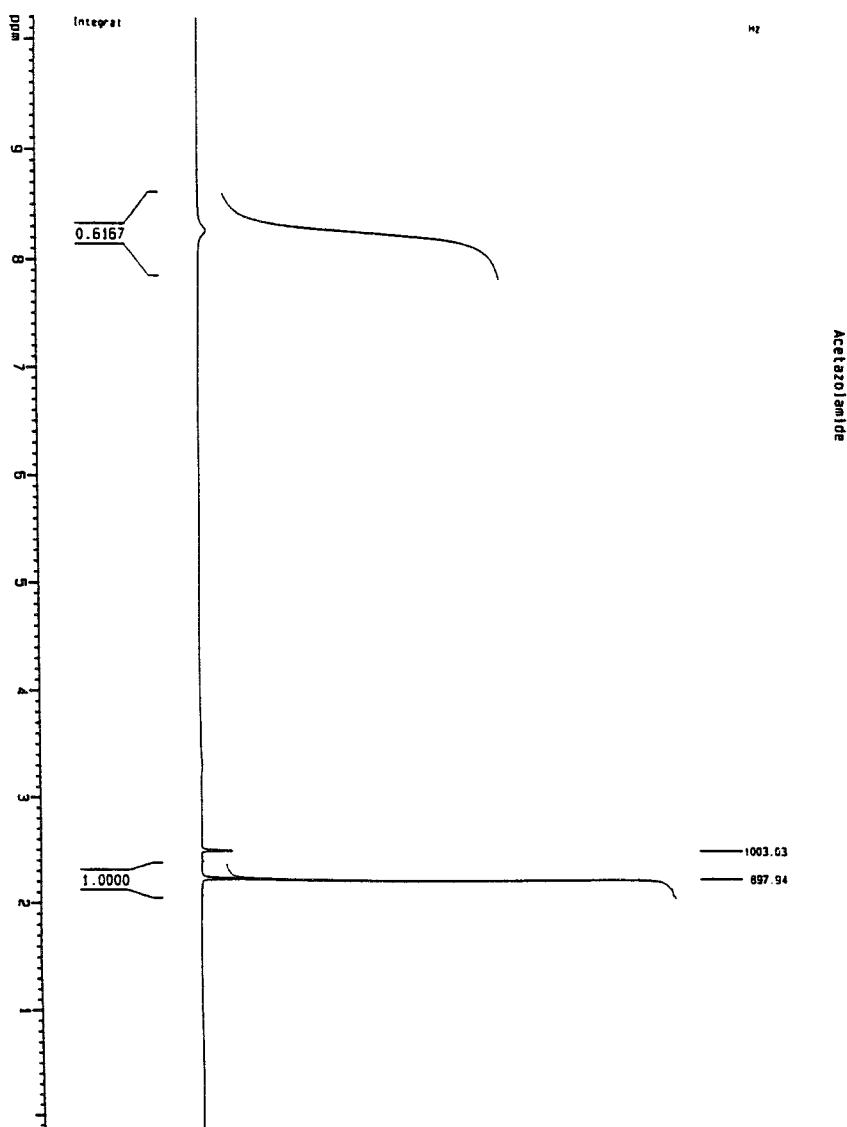


Fig. 1 $^1\text{H-NMR}$ Spectrum of Acetazolamide in DMSO-d_6

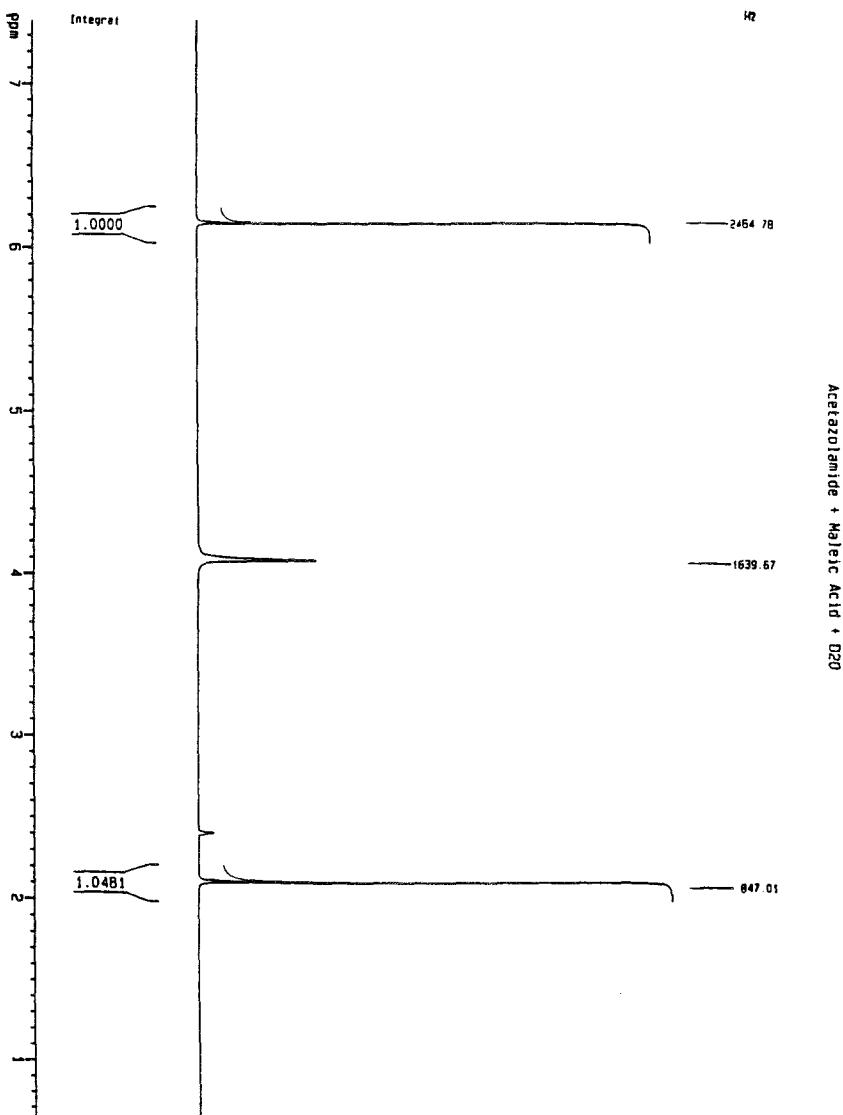


Fig. 2. ¹H-NMR Spectrum of Acetazolamide + Maleic Acid in DMSO-d₆ after D₂O exchange

TABLE 1
Determination and the Statistical Results of the Proposed ^1H - NMR and USP XXIII methods

Acetazolamide Tablet, 250 mg.				
NMR Method		USP XXIII Method		
Sample No	Amount Found mg	Amount Found %	Amount Found mg	Amount Found %
1	249.75	99.90	249.95	99.98
2	248.80	99.52	249.45	99.78
3	249.00	99.60	249.45	99.78
4	249.75	99.90	249.25	99.70
5	249.25	99.70	248.80	99.52
6	249.10	99.64	248.70	99.48
7	249.25	99.70	249.00	99.60
8	249.75	99.90	249.05	99.62
9	249.70	99.88	248.75	99.50
10	249.70	99.88	249.50	99.80
Mean : 249.41		Mean : 249.19		
% : 99.76		% : 99.68		
SD : 0.3654		SD : 0.4019		
CV% RSD : 0.1465		CV% RSD: 0.1612		

forms was realised easily. The method given for acetazolamide tablets in USP XXIII was also applied and the results of the proposed and USP XXIII method are given in Table 1.

The results were also compared statistically in each series by paired t-

TABLE 2
Recovery Data Obtained for Acetazolamide by Using $^1\text{H-NMR}$ Method

Sample No	Acetazolamide Added (mg)	Found (mg)	Recovery %
1	25	24.98	99.92
2	25	24.98	99.92
3	25	24.96	99.84
4	25	25.02	100.08
5	25	24.98	99.92
6	25	24.99	99.96
7	20	19.96	99.80
8	21	21.02	100.10
9	22	21.98	99.91
10	23	22.96	99.83
11	24	23.98	99.92
12	25	25.00	100.00
13	26	25.96	99.85
14	27	26.96	99.85
8: 99.92		RSD : 0.0809	

test and no significant difference was found. As it can be seen from Table 1, the relative standard deviation values are very low showing the repeatability of the proposed NMR method is high enough.

Mean recovery and relative standard deviation of the method were obtained as 99.12 and 0.0809 for acetazolamide in the synthetic preparations by adding known amounts of acetazolamide (TABLE 2)

CONCLUSION

Acetazolamide content of a pharmaceutical dosage form can be

determined with the use of maleic acid as the internal standard by ¹H-NMR spectroscopy. The statistical results show that the method can be easily applied since it is simple, rapid, and specific. It is sufficiently sensitive and rapid to be utilised in assaying individual tablets and also can serve as an identification test for acetazolamide.

REFERENCES

- [1] U.J.Griesser, A.Burger, and K.Mereiter, Journal of Pharmaceutical Sciences, 86(1997) 352-358.
- [2] N.Ichicawa, K.Naora, H.Hirano, K.Iwamoto, Journal of Pharmaceutical and Biomedical Analysis 17(1998) 1415-1421.
- [3] G.R.Iyer, D.R.Taft Journal of Pharmaceutical and Biomedical Analysis 16(1998) 1021-1027.
- [4] USP XXIII NF18 (1995).

Date Received: December 2, 1999

Date Accepted: May 1, 2000